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We consider a problem of ranking alternatives based on their deterministic performance evaluations on
multiple criteria. We apply additive value theory and assume the Decision Maker’s (DM) preferences to
be representable with general additive monotone value functions. The DM provides indirect preference
information in form of pair-wise comparisons of reference alternatives, and we use this to derive the
set of compatible value functions. Then, this set is analyzed to describe (1) the possible and necessary
preference relations, (2) probabilities of the possible relations, (3) ranges of ranks the alternatives may
obtain, and (4) the distributions of these ranks. Our work combines previous results from Robust Ordinal
Regression, Extreme Ranking Analysis and Stochastic Multicriteria Acceptability Analysis under a unified
decision support framework. We show how the four different results complement each other, discuss
extensions of the main proposal, and demonstrate practical use of the approach by considering a problem
of ranking 20 European countries in terms of 4 criteria reflecting the quality of their universities.
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1. Introduction

Inadvertent biases and uncertainties constitute an indispens-
able part of many decision support processes. They are related to
the specification of a decision problem, the environment in which
the decision has to be made, and the character of the value system
and preferences of a Decision Maker (DM) [3]. The complexity of
this issue has led to the development of a framework for robust-
ness analysis, i.e. a theoretical basis and a diversity of dedicated
multiple criteria decision support methods that take into account
internal and external uncertainties observed in the actual decision
situations.

As noted by Vincke [29], robustness is often used to formulate
requirements with respect to decision processes, methods, solu-
tions, or conclusions. In this paper, we are interested in investigat-
ing the robustness of the provided conclusions, i.e. whether they
are valid for all or for the most plausible sets of model parameters.
We focus on multiple criteria ranking problems with deterministic
performance evaluations, and model the DM’s preferences with
additive multi-attribute value models [13] defined through holistic
pair-wise preference statements (i.e. alternative a is (weakly) pre-
ferred over b).
ll rights reserved.

pl (M. Kadziński), tervonen@
The holistic judgments may require smaller cognitive effort
from the DM in answering questions concerning her preferences
than direct elicitation of the value function, e.g., through the bisec-
tion method [13]. However, there is typically more than a single
value function compatible with the holistic statements. Obviously,
the ranking of the alternatives can vary depending on the compat-
ible value function used, and often the set of compatible functions
must be reduced in size by introducing additional preference infor-
mation to obtain a complete preorder or to determine the most
attractive alternative.

Robust Ordinal Regression (ROR) [6,4] allows taking into ac-
count all instances of a preference model (in our case, the mono-
tone additive value functions) compatible with the provided
indirect preference information. These instances do not involve
any arbitrary parametrization, so the whole space of compatible
value functions can be explored. ROR methods provide the DM
with two results, the necessary and possible preference relations
for the set of considered alternatives. As far as methods designed
for dealing with multiple criteria ranking problems are concerned,
ROR has been implemented for the first time in UTAGMS [6] that is a
generalization of the UTA method [8]. Apart from considering all
compatible value functions rather than just a single one, the
UTAGMS does not require the DM’s ranking of reference alternatives
to be complete and it assumes the use of marginal value functions
that are general monotone, and not piece-wise linear. [9] extended
the framework to consider all complete preorders compatible with
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the preference information and to determine the best and the
worst ranks taken by each alternative.

A different way of handling multi-criteria problems having
uncertain or imprecise values for the model was proposed in Sto-
chastic Multicriteria Acceptability Analysis (SMAA). These methods
apply simulation in order to provide the DM with indices describ-
ing the decision problem [23]; in particular, the original SMAA
method [14] computes acceptability indices measuring the variety
of different preferences that give each alternative the best rank,
and SMAA-2 [16] extends it by introducing rank acceptability indi-
ces. They indicate the share of weights, criteria measurements, and
other model parameters that assign an alternative to any rank from
the best to the worst one. Ref. [18] proposed to derive pair-wise
winning indices that indicate, for two alternatives, the probabili-
ties of either being on a higher rank.

Both ROR and SMAA fail to consider some important issues. In
particular, ROR methods analyse the sets of all, some, or no compat-
ible instances of the preference model and the most and the least
advantageous compatible model instances. However, in practical
decision making situations, the necessary relation often leaves many
pairs of alternatives incomparable, and it is desirable to answer how
probable is it for an alternative to be preferred over another. Indica-
tion that an alternative could be ranked at its best or worst possible
position with very high or extremely low shares of compatible pref-
erence models as well as knowing the most likely ranks an alterna-
tive can attain may change the preferred alternative of the DM
similarly as risk attitude partially defines preference over risky out-
comes in multi-attribute utility theory. Consequently, knowing the
most and the least probable ranks and the probability of being pre-
ferred to another alternative may be valuable for practical decision
support. In particular, a low probability of attaining a given rank
indicates it to be sensitive for small changes in DM preferences.

SMAA-2 is traditionally applied with linear marginal value func-
tions [27,28,24,19,1]. Such a limitation is arbitrary and restrictive,
and it would be desirable for SMAA-2 to be applicable also with
general monotone value functions. Furthermore, although SMAA-
2 allows DMs to provide holistic preference judgments, they are
used solely to derive linear constraints for the weights of the linear
marginal value functions, and apart from the scaling, not to derive
the piecewise linear functions themselves. Finally, although the
rank acceptability indices of SMAA-2 can be estimated to within
acceptable error bounds [25], they are not accurate. Therefore, an
estimated rank acceptability or pair-wise winning index of 0 can-
not be regarded with certainty, because they do not exclude the
possibility of the alternative attaining a given position or being
preferred over another alternative, respectively. Although the con-
ditions under which such a situation is possible may be very spe-
cific, they are still consistent with the preference information
provided by the DM. Thus, it is desirable to analyze estimations
of the SMAA indices in the context of the necessary, possible, and
extreme results of ROR and Extreme Ranking Analysis (ERA) to pro-
vide information on which particular outcomes occur with all,
some, or no compatible preference models.

In this paper we overcome these shortcomings by combining ROR
and SMAA in a joint approach. On the one hand, ROR is enriched by
computing how probable are the possible relations. On the other
hand, SMAA is extended by considering general instances of the
preference model, admitting partial holistic judgments provided in
an iterative manner, and confronting the indices estimated through
Monte Carlo simulation with the results indicating necessary and
possible preference relations and the corresponding extreme ranks.

The organization of the paper is the following. Section 2 pre-
sents the new combined approach for multiple criteria ranking
problems. Section 3 considers extensions, discussing relations
between the provided preference information and the outcomes
of the combines approach, and introduces a procedure for selecting
a representative value function. Section 4 provides an example
application and Section 5 concludes.

2. The combined approach

We use the following notation:

� A = {a1, . . . ,ai, . . . ,an} – a finite set of n alternatives;
� AR = {a⁄,b⁄, . . .} – a finite set of reference alternatives on which

the DM accepts to express preferences; we assume that AR # A;
� G = {g1, . . . ,gj, . . . ,gm} – a finite set of m evaluation criteria,

gj : A! R;
� Xj = {gj(ai),ai 2 A} – the set of deterministic evaluations on gj; we

assume, without loss of generality, that the greater gj(ai), the
more desirable is alternative ai on criterion gj;
� x1

j ; . . . ; x
njðAÞ
j – the ordered values of Xj; xk

j < xkþ1
j ; k ¼ 1; . . . ;

njðAÞ � 1, where nj(A) = jXjj and nj(A) 6 n; consequently,
X ¼

Qm
j¼1Xj is the evaluation space.

The DM provides a partial preorder on the set of reference alter-
natives AR, denoted by %. In particular, the DM can state that a⁄ is
at least as good as b⁄ (a� % b�), a⁄ is indifferent to b⁄ (a⁄ � b⁄), or a⁄

is strictly preferred to b⁄ (a⁄ � b⁄). As a preference model, we use
the additive value function:

UðaÞ ¼
Xm

j¼1

ujðaÞ ð1Þ

where the marginal value functions uj xk
j

� �
; k ¼ 1; . . . ;njðAÞ are

monotone, non-decreasing and normalized so that the overall value
(1) is bounded within the interval [0,1].

The pair-wise comparisons provided by the DM form the input
data for the ordinal regression that finds the whole set of value
functions being able to reconstruct these judgments. Such value
functions are compatible with the preference information. Pre-

cisely, a set of general additive value functions UAR

ROR compatible
with the provided pair-wise comparisons is defined with the
following set of constraints:

Uða�ÞP Uðb�Þ þ e; if a� � b� for a�; b� 2 AR
;

Uða�Þ ¼ Uðb�Þ; if a� � b� for a�; b� 2 AR
;

Uða�ÞP Uðb�Þ; if a� % b� for a�; b� 2 AR
;

uj xk
j

� �
� uj xðk�1Þ

j

� �
P 0; k ¼ 2; . . . ;njðAÞ;

uj x1
j

� �
¼ 0;

Xm

j¼1

uj x
njðAÞ
j

� �
¼ 1;

9>>=
>>;EAR

base

9>>>>>>>>>>>=
>>>>>>>>>>>;

EAR

ROR; ð2Þ

where e is an arbitrarily small positive value. If e⁄ = maxe, s.t. EAR

ROR is

greater than 0 and EAR

ROR is feasible, the set of compatible value func-
tions is non-empty. Otherwise, the provided preference information
is inconsistent with the assumed preference model.
2.1. Necessary and possible preference relations

Robust Ordinal Regression applies all compatible value func-
tions UAR

ROR, and defines two binary relations in the set of all alterna-
tives A [6]:

� Necessary weak preference relation, %N , that holds for a pair of
alternatives (a,b) 2 A � A, in case U(a) P U(b) for all compatible
value functions;
� Possible weak preference relation, %P , that holds for a pair of

alternatives (a,b) 2 A � A, in case U(a) P U(b) for at least one
compatible value function.
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The following linear programs (LPs) need to be solved to assess
whether the relations hold:

Maximize : e ð3Þ

s.t.

UðbÞ � UðaÞP e;

EAR

ROR;

)
ENða; bÞ

and

Maximize : e ð4Þ

s.t.

UðaÞ � UðbÞP 0;

EAR

ROR:

)
EPða; bÞ

Then, a %N b if EN(a,b) is infeasible or e⁄ = maxe, s.t. EN(a,b), is not
greater than 0. a %P b if EP(a,b) is feasible and e⁄ = maxe, s.t. EP(a,b),
is greater than 0.
2.2. Pair-wise outranking indices

Pair-wise outranking index POI(a,b) is, for a pair of alternatives
(a,b) 2 A � A, the share of compatible value functions for which a is
not worse than b. Consequently, for any (a,b) 2 A � A:

POIða; bÞ 2 ½0;1� and POIða; bÞ þ POIðb; aÞP 1;

and for any a 2 A, POI(a,a) = 1. Note that the pair-wise winning in-
dex PWI(a,b) [18] is PWI(a,b) = 1 � POI(b,a). The stochastic index
POI can be computed exactly only in very small problems, and in
what follows we consider its Monte Carlo estimation POI0.

The necessary and possible weak preference relations and pair-
wise outranking indices relate to each other as follows:

Remark 2.1. For any pair of alternatives a,b 2 A:

1. a %N b) POI0ða; bÞ ¼ 1,
2. :ða %P bÞ ) POI0ða; bÞ ¼ 0,
3. POI0ða; bÞ > 0) a %P b; in particular, POI0ða; bÞ ¼ 1) a %P b,
4. POI0ða; bÞ ¼ 0) :ða %N bÞ.

The truth of the necessary relation and the falsity of the possible
relation are the most certain recommendations provided by
ROR. They indicate that one alternative is at least as good as the
other for all or no compatible value functions, respectively.
Thus, any value function sampled in a single Monte Carlo iteration
needs to confirm such indication. However, the inverse is not nec-
essarily true, i.e. if POI0(a,b) = 1 (POI0(a,b) = 0) does not imply that

a %N b (:ða %P bÞ) since the set of value functions UAR

SMAA 	 UAR

ROR

taken into account in the sample in the current iteration might

not contain U 2 UAR

ROR such that U(b) > U(a)(U(a) P U(b)). Thus,
outcomes of ROR may enrich an indication provided by SMAA
with statements that are absolutely sure, certainly not true, or
possible.

On the other hand, if a and b are related by the necessary
incomparability (i.e., :ða %N bÞ or :ðb %N aÞ), there exist:

U1;U2 2 UAR

ROR; such that U1ðaÞ > U1ðbÞ and U2ðaÞ < U2ðbÞ: ð5Þ

If such ambiguity in the comparison for some pairs of alternatives
occurs, it is useful to investigate the share of compatible value func-
tions for which a is at least as good as b, and vice versa (i.e., POI0(a,b)
and POI0(b,a)). In this way, we would be able to state whether a def-
inite possible relation is ‘‘almost sure’’, ‘‘sure on average’’, ‘‘barely
sure’’, or ‘‘almost not possible at all’’. In particular, analyzing the
difference between POI0(a,b) and POI0(b,a) may be helpful in desig-
nating a better alternative.

2.3. Extreme ranks

Definition 1 (Ranking function). The rank of an alternative a
relative to all alternatives in A is defined with the ranking function

rankðU; aÞ ¼ 1þ
X

b2Anfag
hðU; a; bÞ; where ð6Þ

hðU; a; bÞ ¼
1; if UðbÞ > UðaÞ
0; otherwise

�
ð7Þ

To identify the best P�ðaÞ ¼max
U2UAR

ROR
ðrankðU; aÞÞ and the worst

P�ðaÞ ¼ min
U2UAR

ROR
ðrankðU; aÞÞ ranks that a particular alternative

a 2 A can attain, [9] proposed ERA consisting of the following
Mixed-Integer Linear Programming (MILP) models:

Minimize : f rank
max ¼

X
b2Anfag

vb ð8Þ

s.t.

UðaÞ � UðbÞ þMvb P 0; for all b 2 A n fag;
EAR

ROR;

)
EAR

max;

and

Minimize : f rank
min ¼

X
b2Anfag

vb ð9Þ

s.t.

UðbÞ � UðaÞ þMvb P e; for all b 2 A n fag;
EAR

ROR;

)
EAR

min;

where M and e are auxiliary variables equal to, respectively, big and
small positive values, and vb is a binary variable associated with
comparison of a to alternative b 2 An{a}. The best rank P⁄(a) of alter-
native a is f rank

max þ 1 and the worst rank P⁄(a) is n� f rank
min .

2.4. Rank acceptability indices

The rank acceptability index RAI(a,k) 2 [0,1], for alternative
a 2 A and rank k = 1, . . . ,n, is defined as the expected share of com-
patible value functions that grant alternative a rank k. Similarly to
POI, RAI can only be computed exactly in very small problems and
therefore in what follows we consider its Monte Carlo estimation
RAI0. The extreme ranks and rank acceptability indices relate to
each other as follows:

Remark 2.2. For any alternative a 2 A:

1. k 2 [1,P⁄(a)) [ (P⁄(a),n]) RAI0(a,k) = 0,
2.
PP�ðaÞ

k¼P�ðaÞRAI0ða; kÞ ¼ 1,
3. RAI0(a,k) > 0) P⁄(a) 6 k and k 6 P⁄(a).

Extreme Ranking Analysis indicates the range of ranks [P⁄(a),
P⁄(a)] that can be attained by each alternative a 2 A when taking

into account all compatible value functions UAR

ROR. For ranks k out-
side this range, RAI0(a,k) is 0. For ranks within this range, RAI0(a,k)
may be greater than 0, but is not necessarily greater than 0. Never-
theless, for each a 2 A, the sum of rank acceptability indices for
ranks between P⁄(a) and P⁄(a) is equal to 1. One should also bear
in mind that the range of possible ranks indicated by ERA may
be wider than the range of ranks in the SMAA indices, so only
the recommendations of ERA should be treated with certainty.
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Furthermore, if we limit UAR

ROR to exclude value functions for
which two alternatives obtain an equal rank, the following Theo-
rem holds:

Theorem 2.1 (No rank jumps). Assume there are no shared ranks,
i.e. 8U 2 UAR

ROR; 8ðai; ajÞ 2 A� A; i – j : UðaiÞ – UðajÞ. Now, if
9U0; U00 2 UAR

ROR : rankðU0; aiÞ ¼ q; rankðU00; aiÞ ¼ qþ dq with

dq P 2) 8d 2 f0; . . . ; dqg9U� 2 UAR

ROR : rankðU�; aiÞ ¼ qþ d
Proof. By induction on dq; the base case is dq = 2. Let ai = a1 and a2,a3

be the alternatives that ‘‘overtake’’ a1 in the ranking, i.e. U0(a1) >
U0(a2), U0(a1) > U0(a3), U00(a1) < U00(a2), U00(a1) < U00(a3). Now,

as UAR

ROR is convex (see the proof of Proposition 4.5

in [7]), UAR

ROR 3 U�ðaÞ ¼ ð1� aÞU0ðaÞ þ aU00ðaÞ8a 2 ½0;1�; particularly
a = 0) U⁄ = U0, a = 1) U⁄ = U00. As there are no shared ranks,
$a 2 (0,1) such that either (i) U⁄(a1) > U⁄(a2) and U⁄(a1) < U⁄(a3), or
(ii) U⁄(a1) < U⁄(a2) and U⁄(a1) > U⁄(a3) (i.e. exactly one of the alterna-

tives a2 and a3 overtakes a1 at once) ) 9U� 2 UAR

ROR :

rankðU�; a1Þ ¼ qþ 1. Induction assumption is that the theorem
holds for dq = D P 2. Now, to prove that the Theorem holds for
dq = D + 1, proceed analogously to dq = 2. h

The assumption concerning no shared ranks is natural as
otherwise the extreme ranks P⁄ and P⁄ would themselves be hard
to interpret. In addition, the multiple simultaneous rank jumps
occur rarely in practice and require an extremely constrained

UAR

ROR, e.g. with an indifference statement a2 � a3 that reduces UAR

ROR

to an isopreference hyperplane, and then if 9a1 2 A9u0; u00 2
UAR

ROR : u0ða1Þ > u0ða2Þ ¼ u0ða3Þ and u00(a1) < u00(a2) = u00(a3)) the rank
of a1 jumps by 2 when it simultaneously passes a2 and a3. There-
fore, Theorem 2.1 implies that

(i) in practice we do not need to assess whether an alternative
can obtain ranks between the extreme ones; assuming no
shared ranks, an alternative can obtain them all, and

(ii) if the SMAA analysis indicates that the probability of an
alternative a attaining rank k, such that P⁄(a) 6 k 6 P⁄(a), is
equal to zero (i.e. RAI0(a,k) = 0), this is most probably due
to inaccuracy of the simulated index RAI0 and actually
9U 2 UAR

ROR : rankðU; aÞ ¼ k.

Although ERA is focused on indicating a range of possible ranks,
in practical decision making situations such a range may be very
wide. Moreover, a binary answer with respect to the possibility
of ranking a in the kth position may be insufficient to arrive at a
recommendation. Thus, SMAA may enrich ERA with answering
questions about the distribution of ranks between the extreme
ones, the most probable range of positions for a given alternative,
the expected position, or the probability of being ranked the best.
In particular, knowing the distribution of ranks for a and b makes
designating the better alternative easier. In particular, it may even
change the result of the comparison of [P⁄(a),P⁄(a)] and [P⁄(b),P⁄
(b)] in terms of interval orders (see e.g. [21]) because for one of
these alternatives, the probability of being ranked at its best or
worst position may be considered by the DM as negligibly low.

SMAA models are usually estimated through Monte Carlo simu-
lation by sampling from the criteria-and weight distributions. In this
paper, we consider only deterministic criteria measurements for
compatibility with the ROR Linear Programming (LP) models. Com-
puting the SMAA indices exactly would require us to (1) compute the
volume of the full space exactly, (2) for each alternative, to partition
the space in regions that grant an alternative a certain rank, and (3)
to compute the volumes of these regions. Exact computation of the
volume of a polytope is P#-hard [17]. Although Markov Chain Monte
Carlo (MCMC) methods for volume estimation exist [12], they are
complex, and a better use for the MCMC techniques is to apply them
in sampling the actual value functions; [26] proposed a method for
sampling weights with linear constraints, which can be formulated
in terms of the reference alternatives in case linear marginal value
functions are used. There do not exist efficient algorithms for sam-
pling the complete value functions with non-linear marginal value
functions, but a simple rejection sampling is feasible in low dimen-
sionality (n < 8) problems. The SMAA-O technique [15] normally
used for generating ordered weights can be applied [25] for generat-
ing the candidate draw marginal value functions. When pure rejec-
tion sampling is applied, the rejection rate grows exponentially with
respect to the number of dimensions but only polynomially regard-
ing the amount of preference statements.

Obviously, acceptable error limits for the stochastic indices can al-
ways be achieved, given sufficient computation time, with a certain
amount of Monte Carlo iterations. Nevertheless, although the simula-
tion results may be precise with high confidence, they can still be
unstable with respect to changes in the set of pair-wise preference
statements provided by the DM. Although the outcomes of both
ROR and SMAA should be interpreted in the context of the provided
preference information, analyzing the influence of different sets of
preference statements may be useful for decision support in practice.

3. Extensions

3.1. Relation between the holistic preference statements and the
analysis outcomes

The joint application of SMAA, ROR and ERA is designed for
incremental specification of pair-wise comparisons. In this way,
the DM can easily assess the impact of each of her/his statements
on the final outcome. The provided results are designed to enhance
the interaction between DM and the analyst. The suggested deci-
sion support process is to first analyze the necessary and possible
preference relations, and in the following iterations enrich the
preference relation for pairs (a,b) for which the relation was possi-
ble, but not necessary (i.e., a %P b, and :ða %N bÞ). Changing the
possible preference relation into a necessary one can be supported
through an analysis of POI0(a,b). The DM may wish to state a % b if
POI0(a,b) is close to one, and indicate :ða % bÞ if POI0(a,b) is close to
zero. In this way, the proposed approach addresses the difficulty of
supplying a large set of preference statements at once.

Note that the preference information provided by the DM is di-
rectly translated into the outcomes of ROR, ERA and SMAA in the
following way:

Remark 3.1. For any reference alternatives a⁄,b⁄ 2 AR:

a� % b� )

a� %N b� and POI0ða�; b�Þ ¼ 1;
P�ða�Þ 6 P�ðb�Þ and P�ða�Þ 6 P�ðb�Þ;

8i 2 ½1; . . . ;n�;
Xi

k¼1

RAI0ða�; kÞP
Xi

k¼1

RAI0ðb�; kÞ;

8j 2 ½1; . . . ;n�;
Xn

k¼j

RAI0ða�; kÞ 6
Xn

k¼j

RAI0ðb�; kÞ;

8>>>>>>>>><
>>>>>>>>>:

ð10Þ

and

a� � b� )

:ðb� %P a�Þ and POI0ðb�; a�Þ ¼ 0;
P�ða�Þ < P�ðb�Þ and P�ða�Þ < P�ðb�Þ;

9i 2 ½1; . . . ;n�;
Xi

k¼1

RAI0ða�; kÞ >
Xi

k¼1

RAI0ðb�; kÞ;

9j 2 ½1; . . . ;n�;
Xn

k¼j

RAI0ða�; kÞ <
Xn

k¼j

RAI0ðb�; kÞ:

8>>>>>>>>><
>>>>>>>>>:

ð11Þ
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Thus, by providing holistic pair-wise preference statements the
DM can directly enrich the necessary relation or impoverish the
possible relation. At the same, the number of pairs of alternatives
(a,b) 2 A � A, for which the indication of POI0(a,b) is unambiguous
(i.e., POI0(a,b) = 1 or POI0(a,b) = 0) increases. Obviously, the pro-
vided preference information influences the relations between
the extreme ranks for the pairs of compared reference alternatives.
Finally, the relations a�f%;�gb� are reflected in the sum of RAIs
corresponding to some i best ranks (i.e., RAI0(x,1), . . . , RAI0(x, i))
and the sum of RAIs for some n � j + 1 last ranks (i.e.,
RAI0(x, j), . . . ,RAI0(x,n)), with i, j 2 [1, . . . ,n] being any (in case
a� % b�) or some particular (in case a⁄ � b⁄) ranks, such that i 6 j.

Let us consider incremental specification of preference
information and denote with BR

1 # BR
2 # . . . # BR

s nested sets of
DM’s pair-wise preference statements on the reference alterna-
tives. Each of these sets BR

t ; t ¼ 1; . . . ; s, is modeled with a set of

constraints EAR

t;ROR generating the set of compatible value functions

UAR

t;ROR. These are nested in an order inverse with respect to the

related sets of pair-wise statements BR
t ; t ¼ 1; . . . ; s, i.e. UAR

1;ROR 

UAR

2;ROR 
 . . . 
 UAR

s;ROR. We will consider nested sets of pair-wise
comparisons only until the generated sets of compatible value
functions are not empty. For each iteration t, we can compute
the corresponding possible and necessary weak preference
relations %P

t and %N
t as well as the extreme ranks denoted as

P�;tðaÞ; P�t ðaÞ. This requires employment of the procedures pre-

sented in Section 2 applied to the set EAR

t;ROR. An important property
of these outcomes is stated in Proposition 3.1. Its proof is omitted
for being obvious. Let us only note that it relies on the observation
that each compatible value function considered in iteration t has
been already considered in iteration t � 1.

Proposition 3.1. %N
t and %

P
t ; t ¼ 1; . . . ; s, are nested relations:

%
N
t�1 #%N

t and %P
t�1 
 %

P
t ; t ¼ 2; . . . ; s. P�t ðaÞ; P�;tðaÞ

� �
are nested

intervals P�t ðaÞ; P�;tðaÞ
� �

# P�t�1ðaÞ; P�;t�1ðaÞ
� �

; t ¼ 2; . . . ; s.
With SMAA we cannot indicate general relations between indi-

ces computed in the subsequent iterations, because each iteration
requires new Monte Carlo simulations and there is no guarantee
that the sets of compatible value functions sampled in these
simulations are related by inclusion.

Note that our approach is the constructivist one for Multiple
Criteria Decision Aiding (MCDA) [20,22]. That is, we do not
consider the DM’s preference structure to be a pre-existing entity
that needs to be discovered, but instead, we assume that a prefer-
ence model has to be built in course of an interaction between the
DM and the analyst. Confronting the DM’s value system with the
results obtained from applying the inferred model on a set of alter-
natives enables her to gain insight on her own preferences, and
also allows her to understand better the employed method. For
example, when pairs of alternatives are incomparable in terms of
the necessary relation, we can exhibit the pair-wise outranking
indices, and by providing this additional information, encourage
the DM to supply statements for pairs of alternatives not present
in the relation. Whether she chooses to provide the statements
or not and which alternative she prefers remains her own decision.
1 http://github.com/tommite/pubs-code/tree/master/rorsmaa-ejor/.
2 http://cran.r-project.org/web/packages/ror/index.html.
3.2. Selection of a representative value function

Greco et al. [5,10] introduced the notion of a single representa-
tive value function that can be used to help the DM understand
the results and to provide a complete ranking of the alternatives.
The representative function is computed by maximizing differences
between comprehensive values of pairs of alternatives (a,b) 2 A � A
related by the necessary preference relation (i.e., a �N b() a %N b
and :ðb %N aÞ), and minimizing differences between comprehen-
sive values of pairs of alternatives c,d 2 A related by the necessary
incomparability relation (i.e., c?Nd() :ðc %N dÞ and :ðd %N cÞ).

Combining SMAA and ROR allows indication of the desired dif-
ference between comprehensive values of specific alternatives. For
a pair of alternatives a,b 2 A, this intensity may be connected with
the comparison between pair-wise winning indices PWI0(a,b) and
PWI0(b,a), i.e. the shares of value functions confirming the advan-
tage of a with respect to b, and vice versa. Precisely, one may select
a value function promoting alternatives designated as better ones
in the comparisons over all pairs of alternatives, and we would re-
quire that UR(a) > UR(b), if PWI0(a,b) > PWI0(b,a). The following pro-
cedure (let us call it REPROC) for selecting a representative value
function corresponds to the above interpretation of
representativeness:

1. For all a,b 2 A, such that PWI0(a,b) > PWI0(b,a), add the following
constraints to the set of constraints EAR

ROR:
UðaÞ � UðbÞP eða; bÞ;
eða; bÞP e:

�
ð12Þ
2. Maximize e s.t. the modified EAR

ROR.
3. Add the constraint e = e⁄, with e⁄ = maxe from the previous

point, to the modified EAR

ROR.
4. Maximize

P
a;b:PWI0 ða;bÞ>PWI0 ðb;aÞeða; bÞ s.t. the modified EAR

ROR.
5. Read the representative comprehensive values UR(a) and corre-

sponding marginal values from the solution of the LP problem
considered in point 4.

Note that REPROC can be suitably adapted with respect to the
preferences of the DM, for example, to emphasize the advantage
of a over b only if the difference PWI0(a,b) � PWI0(b,a) exceeds a
pre-defined threshold tPWI > 0. Such a threshold would be then
used in REPROC by replacing the condition PWI0(a,b) > PWI0(b,a)
with PWI0(a,b) � PWI0(b,a) P tPWI. Furthermore, inaccuracy of the
PWI0 computation can be accounted for by choosing a suitable tPWI,
e.g. 0.02.

4. Application

We analyze a real-world problem, originally considered in
Webometrics [2], of ranking 20 European countries based on the
quality of their universities. The quality is measured with respect
to the presence of the universities in the web. The following four
criteria are considered: g1 (system), the number of universities in
the Top 500 in the given country, divided by the mean position of
these institutions; g2 (access), a score built according to ranks (five
points for a university in the Top 100, four points for 101–200, etc.,
divided by the population size of the country); g3 (flagship), a
normalized score based on the leading university rank for coun-
tries; and g4 (economy), same score as for g3 but divided by GDP
per capita. The performance matrix is provided in Table 1.

Simulation of the RAI0 and POI0 indices was implemented via
rejection sampling, and computation of the ROR indices by
constructing LPs that were subsequently solved with gplk. The
rejection sampling test code is freely available online1 and the
sampling procedure is provided as pseudo-code in Appendix A. In
addition, the UTAGMS, POI0 and RAI0 computation are implemented
in the open source ‘ror’ R package available from CRAN.2 For illustra-
tive purpose, we also analyzed the problem with, in addition to the
general value functions, with linear and two-piece linear ones. For

http://github.com/tommite/pubs-code/tree/master/rorsmaa-ejor/
http://cran.r-project.org/web/packages/ror/index.html


Table 1
Performance matrix for the problem of ranking European countries according to the
presence of their universities in the web.

Country Short name g1 g2 g3 g4

Germany GER 82 94 80 91
United Kingdom UK 74 91 96 82
Spain SPA 59 73 72 67
Sweden SWE 47 77 90 46
Netherlands NET 50 73 88 47
Italy ITA 51 50 84 55
Finland FIN 42 59 88 39
Belgium BEL 44 57 84 41
Austria AUS 42 53 88 38
Denmark DEN 42 61 68 39
France FRA 45 37 80 44
Czech Rep. CZE 41 43 80 40
Portugal POR 41 41 60 40
Slovenia SLO 38 37 72 34
Ireland IRE 40 40 60 34
Hungary HUN 39 34 48 38
Estonia EST 38 36 44 34
Greece GRE 39 28 40 34
Poland POL 39 26 36 37
Slovakia SVK 37 21 8 37
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the stochastic model, the candidate draws with the marginal linear
value functions can be computed with standard SMAA-2 simulation
technique by just varying the weights (see [25]). For the models with
2-piece linear marginal value functions, the candidate draws are
sampled by generating the marginal value function middle point val-
ues (i.e. v (0.5)) uniformly from ]0,1[. Then the marginal functions
start from 0, end at 1, have the sampled middle point value, and
are scaled with uniformly generated weights (similarly to sampling
the candidate draws with linear marginal value functions).

4.1. Preference information

We apply three pair-wise comparisons of reference alternatives
based on the actual ranks of these alternatives as determined by
Webometrics:

Denmark � Austria; Spain � Sweden; France � Czech Rep:

These are consistent with respect to the considered additive model
when assuming linear, two-piece linear, and general monotone
non-linear value functions. Let us denote the sets of compatible
additive value functions composed of linear marginal value func-
tions by UAR

1 , of two-piece linear ones by UAR

2 , and of general mono-
tone ones by UAR

G . Obviously, the following inclusion relations are
satisfied:

UAR

1 #UAR

2 #UAR

G : ð13Þ

In the following subsections, we will discuss in detail results ob-
tained with the general value functions, and subsequently compare
them with those obtained with the linear and two-piece linear ones.

4.2. Necessary/Possible Preference Relations and Pair-wise Outranking
Indices

For the provided preference information, the necessary and pos-
sible weak preference relation are computed using UTAGMS. The
Hasse diagram of the necessary relation �N

G assuming the use of
general monotone marginal value functions is marked with solid
arcs in Fig. 1. There are 149 pairs of alternatives (a,b) 2 A � A re-
lated by the necessary preference �N

G (e.g., (Germany, Spain), (Italy,
Portugal)). These relations are robust with respect to the given
preference information. When analyzing the necessary relation,
Germany and United Kingdom should be perceived as the best
alternatives, Spain, Netherlands, Italy and Sweden should be
viewed as relatively good countries, whereas Poland, Greece, Esto-
nia, and Slovakia need to be considered as the worst ones.

When using general value functions, the degree of freedom in
assessing compatible instances of the preference model is the
greatest. Using the most flexible model, one obtains also the most
general results. Hence, when taking into account two-piece linear
marginal functions, it is easier to satisfy the necessary relation as
the set of compatible value functions is smaller, and

UAR

2 #UAR

G ) �N
2 
 �N

G . In Fig. 1, the necessary relations that become
true when limiting the set of compatible value function from gen-
eral to two-piece linear are marked with dashed arcs. Precisely,
there are three such relations: (SPA, ITA), (SPA, NET), (ITA, BEL).
Further, when considering linear marginal value functions the nec-
essary relation �N

1 is even richer: there are another five pairs of
alternatives (i.e., (GER, UK), (ITA, FIN), (ITA, DEN), (BEL, AUS),
(POR, SLO)) for which �N

1 is true whereas �N
2 is false. These rela-

tions are marked with dotted arcs in Fig. 1. In general, the neces-
sary relation corresponding to different types of marginal value
functions is nested as follows:

�N
1 � �N

2 � �N
G : ð14Þ

If the necessary relation holds for a given pair of alternatives, then
the possible relation holds as well. However, for the case of general
value functions there are 41 pairs of alternatives (c,d) 2 A � A re-

lated by the necessary incomparability ?N, i.e., : c %N
G d

� �
and

: d %N
G c

� �
(e.g., (Germany, UK), (Finland, Denmark), (Slovenia, Slo-

vakia)). The nodes corresponding to these countries are not related
by an arc (neither directly nor when considering transitivity of the
necessary relation) in Fig. 1. The original ROR methods leave these
pairs of alternatives equally desirable, stating that there is at least
one compatible value function for which c is ranked better than d,
and at least one compatible value function for which this order is
reversed. With our combined approach we are able to estimate
the share of compatible value functions that confirm the possible
preference relation. In Fig. 2, we present pair-wise outranking indi-
ces POI0(c,d) and POI0(d,c) for pairs of alternatives (c,d) 2 A � A re-
lated by ?N

G . When considering the nodes corresponding to a
particular pair (c,d), we indicate with a smaller (greater) head of
the arc alternative c (d) for which the result of the SMAA-based
comparison is positive (negative) (i.e., POI0(c,d) > POI0(d,c)). The val-
ues of the indices are provided near the corresponding heads of the
arc. In particular, for (Germany, UK), POI0(Germany,UK) = 78.11%
and POI0(UK,Germany) = 21.89%.

When it comes to indicating the best country, analysis of pair-
wise outranking indices supports Germany rather than UK (i.e.,
POI0(Germany,UK) > POI0(UK,Germany)). When comparing the sub-
set of the worst alternatives, for a majority of compatible value
functions Slovakia is ranked worse than all other alternatives that
are not necessarily preferred to any other alternative. Furthermore,
Ireland and Hungary compare positively to Slovenia, despite they
are placed at a lower level in the necessary relation-based ranking.
Note that for some pairs of alternatives, designating the better
alternative on the basis of POIs is straightforward (see, e.g., (Spain,
Italy), (Portugal, Slovenia)). For some other pairs, such indication is
ambiguous, since POIs do not differ significantly (see, e.g., (Italy,
Sweden), (Poland, Greece)). Finally, although the pair-wise outran-
king index for the pair (Germany, Italy) is equal to 1, one needs to
bear in mind that according to ROR there are some compatible va-
lue functions for which Italy is ranked better than Germany, and
therefore the necessary weak preference relation does not hold
for this pair of alternatives.

As far as pair-wise outranking indices for different types of mar-
ginal value functions are concerned, for clarity of presentation, we
will focus on six alternatives that could be considered as potential
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best options. In Fig. 1 (to the right), we present pair-wise outran-
king indices corresponding to the different types of marginal value
functions. For all linear value functions Germany is preferred to UK,
for two-piece linear functions there is a low probability that UK
may be ranked better, and with general value functions Germany
is ranked lower than UK already for over 20% of the compatible va-
lue functions. Moreover, for some pairs of alternatives, even desig-
nation of the better country depends on the underlying preference
model. In case of Sweden and Italy, the majority of compatible lin-
ear value functions support Sweden, for two-piece linear functions
the difference between pair-wise outranking indices for these
countries is negligible, whereas analysis conducted with general
value functions favors Italy.

4.3. The representative value function

The representative value function composed of marginal gen-
eral value functions, which has been selected with the REPROC
procedure, is presented in Fig. 3. The corresponding comprehensive
values are provided in Table 2, column UR. For all pairs of alterna-
tives this function assigns a larger value to the alternative with a
higher pair-wise winning index (i.e., UR(a) > UR(b), for all a,b 2 A,
such that PWI0(a,b) > PWI0(b,a)). In particular, when considering
the complete ranking determined by UR, Germany is ranked first
with score 1.0, because PWI0(Germany,b) >PWI0(b,Germany), for
all b 2 An{Germany}. On the contrary, Slovakia is ranked at the very
bottom, since it looses pair-wise comparisons with all the remain-
ing alternatives, i.e., PWI0(Slovakia,b) < PWI0(b,Slovakia), for all
b 2 An{Slovakia}.

Note that the selected value function ‘‘flattens’’ the consequences
of applying the set of compatible value functions sampled by SMAA.
In this way, it extends the capacity of the proposed approach in
explaining the outputs in terms of a value function that could be dis-
played to the DM. Then, the DM can see a score for each alternative,
and easily assess relative importance of the criteria understood as a
share of a given criterion in the comprehensive value.
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Table 2
Representative values assuming the use of general value functions. Extreme Ranking
Analysis with respect to marginal value functions that are linear (1), two-piece linear
(2), or general (G).

Country UR P�1 P⁄,1 P�2 P⁄,2 P�G P⁄,G

GER 1.00 (1) 1 1 1 2 1 4
UK 0.95 (2) 2 2 1 2 1 2
SPA 0.90 (3) 3 3 3 3 3 5
SWE 0.75 (6) 4 6 4 6 4 6
NET 0.85 (4) 4 6 4 6 2 6
ITA 0.80 (5) 4 6 4 9 2 10
FIN 0.60 (9) 7 12 6 12 6 12
BEL 0.70 (7) 7 8 7 10 6 11
AUS 0.50 (11) 10 13 8 13 8 13
DEN 0.55 (10) 7 12 6 12 6 12
FRA 0.65 (8) 7 11 7 11 7 11
CZE 0.45 (12) 9 12 9 12 9 12
POR 0.40 (13) 10 13 10 14 10 14
SLO 0.25 (16) 14 19 13 19 13 19
IRE 0.35 (14) 14 18 14 18 14 18
HUN 0.30 (15) 14 17 14 17 14 17
EST 0.20 (17) 16 20 16 20 16 20
GRE 0.10 (19) 16 20 16 20 16 20
POL 0.15 (18) 15 19 15 19 15 19
SVK 0.05 (20) 16 20 16 20 16 20
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4.4. Extreme ranks and rank acceptability indices

Table 2 shows the best and the worst ranks of each alternative
a 2 A for all compatible value functions when considering different
types of marginal value functions. For the general ones, Germany
and UK are potential top alternatives, but Germany is more sensi-
tive to the choice of a compatible value function because its rank
Table 3
Distribution of extreme ranks.

Range 1 6 P�GðaÞ 6 5 6 < P�GðaÞ
Number of countries 6 7
Range 1 6 P⁄,G(a) 6 5 6 < P⁄,G(a
Number of countries 3 3
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Fig. 4. The rank acceptability indices (see Table B
may drop to 4. Spain, Sweden, Netherlands, and Italy possibly take
place in the top 5. However, among these four countries only Spain
never falls out top 5, and in the worst case Italy may be ranked only
10th. Another 5 countries (Belgium, Austria, Denmark, France, and
Czech Rep.) are always ranked in the middle of the ranking (i.e.,
P�GðaÞP 6 and P⁄,G(a) 6 15). Estonia, Greece, Poland, and Slovakia
are the least ranked alternatives though Poland is never ranked
at the very bottom. The distributions of extreme ranks are provided
in Table 3.

As suggested in [9], when analyzing the extreme ranks for all
alternatives, one can easily work out a recommendation in terms
of a multiple criteria choice problem. In this case, it is sufficient
to define the limits on the best and/or the worst ranks that poten-
tially best options need to attain. Furthermore, on the basis of the
extreme ranks, we could compare alternatives in terms of rank-
ing intervals. In particular, we could indicate the preference of a
over b, if P�GðaÞ < P�GðbÞ and P�;GðaÞ < P�;GðbÞ (e.g., (Germany, Italy),
(Belgium, Austria)), or state indifference between a and b, if
P�GðaÞ; P�;GðaÞ
� �

	 P�GðbÞ; P�;GðbÞ
� �

(e.g., (Spain, Netherlands), (Slove-
nia, Hungary)).

The ranges of possible ranks for different types of marginal va-
lue functions are nested as follows (see Table 2), for each a 2 A:

P�1ðaÞ; P�;1ðaÞ
� �

# P�2ðaÞ; P�;2ðaÞ
� �

# P�GðaÞ; P�;GðaÞ
� �

: ð15Þ

In particular, when using linear marginal value functions, Germany
is always ranked first. When admitting two-piece linear or general
functions, in the worst case Germany could be ranked second or
fourth, respectively. Furthermore, Italy could be ranked in three,
six, or nine different positions depending on the underlying prefer-
ence model. Nevertheless, for some countries (see, e.g., France,
6 10 11 < P�GðaÞ 6 15 16 6 P�GðaÞ 6 20
4 3

) 6 10 11 < P⁄,G(a) 6 15 16 6 P⁄,G(a) 6 20
7 7
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.4 in Appendix B for the numerical values).
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Fig. 5. Rank acceptability indices for six chosen alternatives and different types of marginal value functions (1 – linear, 2 – two-piece linear, G – general) (see Table B.5 in
Appendix B for the numerical values).
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Hungary, Slovakia) the extreme ranks are the same irrespective of
the type of marginal value function used. In general, the average
width of the ranges of possible ranks for each alternative is 2.9
for linear functions, 3.55 if we admit two linear pieces for each mar-
ginal function, and 4.1 for general functions. For alternatives whose
evaluation vectors are typical within some significant subset of
alternatives, this range is rather narrow (e.g., UK, Spain, Sweden,
Czech Rep., Hungary). For alternatives good on some criteria while
being relatively bad on the others the rank may differ significantly
(e.g., Italy, Finland, Slovenia). Nevertheless, the observed ranges
confirm that when increasing the number of characteristic points,
the underlying preference model becomes more flexible, and addi-
tional additive value functions compatible with the preference
information can be found.

The rank acceptability indices obtained for the general value
functions are presented in Fig. 4. Although Germany may be ranked
Table B.4
The rank acceptability indices (in %) corresponding to Fig. 4.

RANK 1 2 3 4 5

GER 78.11 21.88 0.01
UK 21.89 78.11
SPA 96.35 3.44 0.21
SWE 17.31 31.58
NET 0.01 2.78 43.18 48.71
ITA 0.86 36.07 19.50

5 6 7 8 9
FIN 0.60 6.98 20.50 44.90
BEL 1.01 51.20 41.00 6.16
AUS 0.27
DEN 1.11 6.14 11.20 26.00
FRA 34.60 26.60 7.25
CZE 14.60
POR

11 12 13 14 15
SLO 0.26 8.50 31.56
IRE 53.74 28.61
HUN 37.50 30.10
EST
GRE
POL 9.73
SVK
between first and fourth, for the majority of compatible value func-
tions it is ranked at the top and the probability that it is placed out-
side top 2 is very low. In the same spirit, for many alternatives we
could indicate a single rank attained by them for a significant share
of compatible value functions (e.g., RAI0(Spain,3) = 96.35%,
RAI0(Portugal,13) = 68.56%, RAI0(Slovakia,20) = 82.39%). For some
other countries, analysis of the outcomes of SMAA enables to nar-
row down the range of the most probable ranks. For example, for
over 95% of compatible value functions, Italy is ranked in positions
between 4 and 6, whereas, in general, it could be ranked in posi-
tions between 2 and 10. Note that for a few countries some ranks
have acceptabilities of 0.0 (e.g., (Germany, 4), (Italy, 2), (Austria,
7)), although ERA reveals they do attain these positions with at
least one compatible value function.

For different types of marginal value functions, one could also
note the differences in the provided recommendations with
6 7 8 9 10

51.11
5.32

40.85 1.12 0.67 0.76 0.17

10 11 12 13 14
16.68 8.09 2.25

0.62
16.37 36.71 15.50 31.18
32.95 11.58 11.00
14.91 16.64

9.31 22.69 53.40
8.99 4.29 17.90 68.56 0.26

16 17 18 19 20
33.03 9.15 15.99 1.51
11.76 4.65 1.24
26.32 6.08

6.08 43.30 15.08 30.12 5.38
5.73 15.90 43.23 22.87 12.23

12.38 18.50 19.59 39.85
4.70 2.39 4.87 5.65 82.39



Table B.5
Rank acceptability indices (in %) for six chosen alternatives and different types of marginal value functions corresponding to Fig. 5.

1 2 3 4 5 6 7 8 9 10

GER 1 100.0
GER 2 99.16 0.84
GER G 78.11 21.88 0.01
UK 1 100.0
UK 2 0.84 99.16
UK G 21.89 78.11
SPA 1 100.0
SPA 2 100.0
SPA G 96.35 3.44 0.21
SWE 1 20.32 38.09 41.59
SWE 2 28.83 23.50 47.67
SWE G 17.31 31.58 51.11
NET 1 45.86 52.89 1.25
NET 2 31.96 66.09 1.95
NET G 0.01 2.78 43.18 48.71 5.32
ITA 1 33.82 9.02 57.16
ITA 2 39.21 10.41 49.49 0.80 0.09
ITA G 0.86 36.07 19.50 40.85 1.12 0.67 0.76 0.17
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respect to the rank acceptability indices (see Fig. 5 for RAIs of the
exemplary six countries). Although it is not possible to formulate
general observations related to the comparison of shares of each
rank for particular alternatives, we can see a greater diversity of
the attained ranks with the growth of flexibility of the underlying
preference model, and draw conclusions for each alternative
individually. As for UK, its RAI0 with respect to the first positions
grows from 0.0 (for linear functions) through 0.84–21.89% (for gen-
eral functions). For the Netherlands, the probability that it is
ranked fourth or fifth amounts to over 98% when considering linear
or two-piece linear functions, whereas for general functions the
RAIs corresponding to the third or sixth position become non-
negligible.
5. Conclusions

We presented a new approach for multiple criteria ranking
problems. The approach considers a set of additive value functions
compatible with the holistic pair-wise preference statements pro-
vided by the DM. Then, the necessary and the possible preference
relations are computed through Robust Ordinal Regression LPs, and
these crisp relations are enriched with estimations of their proba-
bilities. Furthermore, we considered the best and the worst ranks
for each alternative and examined the distributions of ranks be-
tween the extreme positions. In this way, purely ordinal results
can be confronted with the pair-wise outranking indices and rank
acceptability indices of SMAA. We emphasized how the outcomes
of the ordinal and stochastic analyses complement each other and
how they can support incremental specification of preference
information. We also presented an extension of the method for
selecting a representative value function.

Although not discussed in detail, the introduced approach re-
mains valid when considering preference information in form of
rank-related requirements [11]. In this case the DM may provide
a range of ranks a particular reference alternatives should attain,
and the SMAA simulation process can additionally be used to sup-
port specification of such ranges.
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Appendix A. Pseudo-code for rejection-sampling a set of general
value functions

Algorithm 1.

Input: nvf, the number of general value functions to sample
Input: P, the set of weak preference statements
Input: A, the set of alternatives
Output: S, the set of sampled value functions
1: S ;
2: for l 2 {1, . . . ,nvf} do
3: ok FALSE
4: while ok = FALSE do
5: for j 2 {1, . . . ,m} do

6: Uj x1
j

� �
 0

7: for k 2 {2, . . . ,nj(A)} do

8: Uj xk
j

� �
 Unif ð0;1Þ

9: end for
10: SORT(Uj)
11: end for
12: ok TRUE
13: for ða % bÞ 2 C do
14: if U(a) < U(b) then
15: ok FALSE
16: break
17: end if
18: end for
19: end while
20: S S [ U
21: end for

Symbol explanations:

Ujðxk
j Þ the value of criterion evaluation xk

j with the marginal
value function of criterion j

SORT(Uj) sort the function values of Uj in an ascending order (i.e.
permute the values so, that 8i; k 2 f1; . . . ;njðAÞg;
i < k : Uj xi

j

� �
6 Uj xk

j

� �
)
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C a set of pair-wise weak preference statements provided
by the DM (in case the statements contain indifference
and/or strong preference ones, modify the if-check of
lines 14–17 accordingly).

Appendix B. Rank acceptability indices for the illustrative
example from Section 4

Tables B.4 and B.5.
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